
MRD Objectivity Inc.

Market Requirements Document

Feature Name: Distributed Queue Manager

Version: 1 Completed By: Leon Guzenda

Date Submitted: 06/19/07

Description of the Problem

Background

Many applications need to place objects on a persistent queue for subsequent processing.
The objects may represent actions or be data that has been selected for subsequent
processing by the current or a separate algorithm.

Problem

Although there are many ways to create a queue of objects in Objectivity/DB, such as a
persistent linked list, the current mechanisms do not perform well enough when there are
large numbers of objects arriving from multiple sources. This is because container level
locking only allows one writer at a time. In most cases, both the placement of objects on
the queue and removing them from the queue requires an update lock.

Description of the Requested Feature

Functionality

1. A mechanism that allows multiple writers to add objects to a logical First In First
Out (FIFO) queue without being blocked by other writers.

2. An iterator mechanism that can remove objects from the FIFO queue with
minimal impact on other writers and queue readers.

3. The logical queue must automatically expand across container and database
boundaries in the event that entries on the queue are not being removed fast
enough to prevent file, container or database limitations being reached.

Performance

1. When multiple writers are adding entries to the logical queue the perceived
performance at each node must be as close as possible to the speed at which a
single writer can add entries.

LG: MRD: Distributed Shared Queue of 06/18/20071 7

MRD Objectivity Inc.

2. When multiple readers are servicing a single logical queue the time to iterate over
the queue should be within one percent of the time it would take a single reader to
iterate over a queue in a single container.

Part of an existing feature or does it require another feature, if so, which one?

• This will be an optional feature of Objectivity/DB.

How is this problem being solved now, and why isn't that acceptable?

Customers are building their own solutions, often having to write queue servers or use
third party message queuing alternatives.

What languages must support this capability?

• All APIs, starting with C++, Java and .Net for C#.

Which platforms must be supported?

• All platforms.

Do any competitors already have this feature?

• GemFire (GemStone)
• JADE

Customers who require this feature

Many customers, particularly in the “Monitoring, Analysis and response” category have
built their own queuing mechanisms or used middleware. Typical users would include:
• Engineering/Manufacturing

o Data Acquisition & Telemetry
o Process Control & Automation

• Complex Financial
• Government

o Control, Communications, Computers. Intelligence, Surveillance, Target
Acquisition and Reconnaissance (C4ISTAR)

o Data Fusion
o Intelligence Community

• Health Sciences and Medical Equipment
• Scientific Computing

LG: MRD: Distributed Shared Queue of 06/18/20072 7

MRD Objectivity Inc.

• Internet Related
o eCommerce
o Internet Infrastructure
o Software as a Service

• Complex IT, especially Complex Event Stream Processing

• Telecom

o Advanced Intelligent Network
o Element Management System
o Network Management
o Network Operations Center
o Operations Support Systems
o Personal Communications Services

Revenue at risk, or which could be won

• An efficient distributed, shared queuing mechanism should increase our chances of
winning business in the following market categories:
o Design and Simulation
o Monitoring, Analysis and Response Systems

When is this required?

• Post Release 10.

Additional Notes

1. The event notification capabilities described in a separate MRD (Unified Date and
Time) could leverage a Queue Manager if it is implemented in time.

2. We will also need:

• Marketing collateral, including promotional material and a special area on
our web site.

• Technical Publications.
• New QA material to prove that the API works and is interoperable with

other platform and language combinations.

3. Licensing costs are to be determined.

LG: MRD: Distributed Shared Queue of 06/18/20073 7

http://www.objectivitydb.com/mediawiki/index.php/Design_and_Simulation
http://www.objectivitydb.com/mediawiki/index.php/Monitoring%252C_Analysis_and_Response_Systems

MRD Objectivity Inc.

4. Appendix A describes a mechanism that should be considered as a potential
solution to this requirement.

LG: MRD: Distributed Shared Queue of 06/18/20074 7

MRD Objectivity Inc.

APPENDIX A – A Mechanism For Supporting A Distributed, Shared Queue

Introduction

One simple way to implement a shared queue would be to build a server that receives
messages containing the object identifiers (OIDs) of objects to be put on the queue.
Multiple writers could send messages to it and multiple readers could send read or “read
and remove” requests. An Advanced Multithreaded Server (AMS) with a modified
Objectivity Open File System (OOFS) layer could implement a suitable caching strategy,
such as “Retain in memory until requested.”

While simple to implement, this mechanism could rapidly become a performance and
scalability bottleneck. It would also be a single point of failure. So, we need a mechanism
that is distributed, fast and failsafe.

Ordering

“FIFO is an acronym for First In, First Out. This expression describes the principle of a
queue or first-come, first-served (FCFS) behavior: what comes in first is handled first,
what comes in next waits until the first is finished, etc. Thus it is analogous to the
behavior of persons queuing (or "standing in line", in common American parlance),
where the persons leave the queue in the order they arrive.” – Wikipedia 06/19/07.

The ordering (of objects or OIDs) may be achieved in many ways, including:
a) Sequential physical placement in memory or a file.
b) A forwardly linked list (or degenerate use of other ordered collections).
c) A vector or indexed array.
d) A chronologically maintained association (uni-directional or bi-directional)

between a queue object and queue members.
e) A timestamp.

Mechanisms a) through d) will only work efficiently with Objectivity/DB if the queue is
maintained within a single container. Mechanism e) can work in a fully distributed
environment, but it has two significant drawbacks:

• All writers must use the same clock.
• Finding successive queue entries without an index (which is itself a

concurrency and performance problem) is expensive.

Proposed Algorithm

1. Each writer uses a dedicated Queue Fragment container that represents the writer’s
contribution to the distributed, shared queue. These containers are registered in a

LG: MRD: Distributed Shared Queue of 06/18/20075 7

http://en.wikipedia.org/wiki/Acronym
http://en.wikipedia.org/wiki/Queue_%2528data_structure%2529
http://en.wikipedia.org/wiki/First-come%252C_first-served

MRD Objectivity Inc.

single Distributed Queue Management container that represents the distributed,
shared queue.

2. The writer can place one or more objects or OIDs into an object that is an instance of
ooSharedQueueEntry (or a subclass). The ooSharedQueueEntry has an
ooFederation_Timestamp field and an optional VArray of OIDs, each one being a
queue entry.

3. The timestamp to be inserted into the ooFederation_Timestamp field is calculated
from a federation timestamp obtained from the lock server at the start of each
transaction. This timestamp is compared with the local system clock and the offset is
stored for the duration of the transaction. The value stored in the
ooFederation_Timestamp is the local system time plus the offset. All of the times will
be held in the format described in the Objectivity Timestamp MRD. The mechanism
for dealing with multiple lock servers is described later.

4. The iterator that returns and generally removes entries from the queue can run in a
client or be implemented with the aid of a Queue Server process.

5. The iterator looks in the Distributed Queue Management Container to determine the
number and identities of the Queue Fragment containers to be searched. It passes this
information to a Parallel Query Engine task splitter that subdivides the work across
PQE Query Agents.

6. Each Query Agent scans its target Queue Fragment container and uses a local sort to
return queue entries and their timestamps in chronological order. The sort can be
avoided if the chronological ordering can be guaranteed by some other mechanism.

7. The client side iterator then marshals the returning streams into chronological order
before returning results to the caller.

One potential problem is that if the queue servicers are not running continuously, or
keeping up with a growing queue, there may be large gaps in time between the entries
stored in different Queue Fragment containers. This problem can be reduced by having
the Query Agent remember (transiently or persistently) the earliest and latest timestamp
in a container. This information could be returned in a setup query directed at all of the
containers, followed by a simple scheduling algorithm that would help minimize the gaps
between bunches of returned entries. A Query Agent would normally only return a range
of queue entries once. The client process would then delete the queue entries, unless
handling them is delegated to a separate server.

If there are multiple lock servers they should use the federated database to store and
retrieve a master time obtained from any one of them. Alternatively, we could limit the
range of a distributed queue to have its Queue Fragments stored in databases under the
control of a single partition’s lock server. The queue entries could still reference objects
anywhere in the federation.

LG: MRD: Distributed Shared Queue of 06/18/20076 7

MRD Objectivity Inc.

New entries could be arriving while the iterator is receiving and marshalling entries.
Having the iterator supply the current timestamp to the Query Agents so that they do not
return any entries created after that time can solve this problem.

The polling nature of the algorithm could be made more efficient if there is an effective
event notification mechanism that can be used to place clues in the Distributed Queue
Management Container or to trigger the processes servicing the queue.

LG: MRD: Distributed Shared Queue of 06/18/20077 7

	Market Requirements Document
	Feature Name: Distributed Queue Manager
	Version: 1 Completed By: Leon Guzenda
	Date Submitted: 06/19/07

	Description of the Problem
	Background
	Problem

	Description of the Requested Feature
	Part of an existing feature or does it require another feature, if so, which one?
	How is this problem being solved now, and why isn't that acceptable?
	What languages must support this capability?
	Which platforms must be supported?
	Do any competitors already have this feature?
	Customers who require this feature
	Revenue at risk, or which could be won
	When is this required?
	Additional Notes
	Introduction
	Ordering
	Proposed Algorithm

