
MRD	 	 Objectivity Inc.

Market Requirements Document

Feature Name: Enhanced Client-Side Caching	 	

Version: 3	 Date Submitted: 11/04/08	 Completed By: Leon Guzenda 	
Version: 2	 Date Submitted: 11/04/08	 Completed By: Leon Guzenda 	
Version: 1	 Date Submitted: 10/28/08	 Completed By: Leon Guzenda 	 	

Description of the Problem

Background

Objectivity/DB currently uses a Least Recently Used discard algorithm to move pages
out of the client process/thread cache when more space is required to create new objects
or to read existing pages from disk.

Abbreviations

• LFU – Least Frequently Used
• LRU – Least Recently Used
• MFU – Most Frequently Used
• MRU – Most Recently Used

The Problem
The current algorithm works well if data is being streamed to or from disk, i.e. a page is
changed and can then be written to disk and discarded, or a page is read, used and can
then be discarded. It also works fairly for random access applications that only use pages
once in a transaction, or infrequently over the life of the cache. However, it is not very
good at supporting applications that stream data and correlate it with a set of existing
data.

Consider an application that is reading an incoming stream of telephone call detail
records and maintaining a count of the number of callers and callees per central office
(Area Code + next four digits). The number of central offices is fixed and it is useful to
cache all of them in memory to avoid I/Os. However, as the stream of call details records
is read into memory the cached pages containing central office details will be paged out,
even though there is a high likelihood that they will be needed again.

The only current solution to this problem is for the application to explicitly hold the call
detail objects open (or to pin them in RAM).

LG: Enhanced Caching	 of 	 11/04/081 4

MRD	 	 Objectivity Inc.

Description of the Requested Feature

The caching algorithm should be able to:
1. Manage objects that are smaller than a page.
2. Manage objects that are larger than a page.
3. Allow holding or pinning of objects within RAM.
4. Allow the user to define the initial size, growth rate and maximum size of cache

areas according to the types of data and usage (small objects, large objects/
LVArrays, indices, collections, schema information, file housekeeping, iteration/
streaming etc.). See the Notes section for qualifications of this requirement.

5. Favor pages that are more frequently used than others.
6. Discard equally used pages in LRU order.

Part of an existing feature or does it require another feature, if so, which one?

This would be a standard product feature.

How is this problem being solved now, and why isn't that acceptable?

1. Users have to explicitly pin objects in the cache. This is less efficient than being
able to control the page discard mechanism.

2. LVArrays have to fit in memory, so large streams of data have to be artificial
broken into logical/physical pages. There are separate MRDs covering chunked/
streamed LVArrays and advanced array handling.

What languages must support this capability?

• C++, Python, Java and .Net for C# in that order of priority.
• Hopefully, any kernel change will quickly propagate to other APIs.

Which platforms must be supported?

• Linux, Windows and Unix.

Do any competitors already have this feature?

• No, the closest is ObjectStore, which allows a user to swap whole partitions of files
into and out of RAM. This can allow a transaction to start by preloading information,
switch to streaming and accumulating transient information, then switch to the
original information and update it before completing the transaction.

LG: Enhanced Caching	 of 	 11/04/082 4

MRD	 	 Objectivity Inc.

• Some products support direct streaming.

Customers who require this feature

• Scientific, engineering and data fusion users – These algorithms frequently access
lookup tables while handling streams of data

• Complex financial simulations.
• Image processing and management applications.
• Medical equipment applications, e.g. for CAT scans and experiment results.
• Customers building data mining tools for very large datasets.

Revenue at risk, or which could be won

• There is no immediate risk, but we will be at a severe competitive disadvantage in the
scientific, engineering, energy and complex financial markets once details of the
SciDB API become public, which could be as soon as early-mid 2009.

When is this required?

• Release 10 (Performance), but see the Notes section below for qualification.

Additional Notes

We will also need:

• Marketing collateral, including promotional material and a special area on our web
site.

• Technical Publications and updates to conventional and web based training material..

• New QA material to prove that the mechanism works, is effective and is interoperable
with other platform and language combinations.

If an MFU algorithm is introduced it may be necessary to allow the user to reset the
counts to 1 to avoid favoring pages that are heavily used in a single transaction and then
never accessed again. Alternatively, the counts could be reduced by some proportion (e.g.
25%) at the end of each transaction.

LG: Enhanced Caching	 of 	 11/04/083 4

MRD	 	 Objectivity Inc.

The cache control parameters set by the user need not be extended for Release 10, e.g.
there is no need to implement streaming behavior for LVArrays, nor to allow control over
schema,index or other housekeeping page areas.

LG: Enhanced Caching	 of 	 11/04/084 4

	Market Requirements Document
	Feature Name: Enhanced Client-Side Caching
	Version: 3 Date Submitted: 11/04/08 Completed By: Leon Guzenda Version: 2 Date Submitted: 11/04/08 Completed By: Leon Guzenda Version: 1 Date Submitted: 10/28/08 Completed By: Leon Guzenda

	Description of the Problem
	Background
	The Problem

	Description of the Requested Feature
	Part of an existing feature or does it require another feature, if so, which one?
	How is this problem being solved now, and why isn't that acceptable?
	What languages must support this capability?
	Which platforms must be supported?
	Do any competitors already have this feature?
	Customers who require this feature
	Revenue at risk, or which could be won
	When is this required?
	Additional Notes

