
MRD	 	 Objectivity Confidential

Market Requirements Document

Feature Name: Connection Explorer

Version: 3	 Date Submitted: 08/05/09 – Name changed from Generic Iterator

Version: 2	 Date Submitted: 10/12/07	
Completed By: Leon Guzenda, with input from Technical Services and Engineering.

Version: 1	 Date Submitted: 09/08/05	 Completed By: Leon Guzenda

Description of the Problem

Many intelligence and telecom networking applications would benefit from the ability to
rapidly traverse a network of objects without needing to know the kinds of links that exist
beforehand.

Users currently specify the type of the association to be iterated over. The kernel can
perform a transitive closure iteration in support of atomic propagated delete and lock
operations, but it is not possible for an application to do transitive closure without
knowing or determining the kinds of links between objects.

Description of the Requested Feature

A new link iterator, inheriting from ooObj, would perform a depth-first transitive closure
from an object to all objects linked to it, directly or indirectly, regardless of association
type or association format (dynamic or inline). Embedded Refs (in the object body or in
its VArrays) should be regarded as links, but the API should allow the caller the option of
iterating using only associations.

Example: The diagram below shows a network of connected objects.

Suppose that iteration starts from A1. The iterator would return (not necessarily in this
exact order) B1, C3, C9, D8, C10, B2, C20 and B5.

LG: Connection Explorer	 of 	 08/05/091 5

Leon Guzenda
Objectivity Inc.

MRD	 	 Objectivity Confidential

There should also be a link checking API which returns true or false depending on
whether or not there are any links between two objects. In the above example it would
return true for a check for a link between any two objects.

Users need to be able to reject certain paths as shortest. For example, given a source and
destination object, there should be an API to iterate over representations of multiple paths
between them in distance order, starting with the shortest.

The iterator and the link check should not go into a loop if there is a ring of connections
between objects, e.g. A to B to C to A.

Part of an existing feature or does it require another feature, if so, which
one?

• Enhances iteration features.
• Should be incorporated into the Parallel Query Engine and Advanced Query

features.

How is this problem being solved now, and why isn't that acceptable?

It can be solved by application programmers, but only with the use of Active Schema and
by developing the transitive closure algorithm.

What languages must support this capability?

• C++
• Java
• SQL++

Which platforms must be supported?

• All platforms.

Do any competitors already have this feature?

• No, but some have transitive closure for a single association /relationship type.

Customers who require this feature

• Relationship hunters (intelligence community and telecom network applications).

LG: Connection Explorer	 of 	 08/05/092 5

MRD	 	 Objectivity Confidential

Revenue at risk, or which could be won

• We frequently talk about the ability for Objectivity/DB to “find needles in multiple
haystacks”, but we don’t actually supply any powerful navigational search
capabilities. This capability, used in conjunction with the Parallel Query Engine,
could be a very powerful selling feature.

When is this required?

• As soon after Release 10 as possible.

Additional Notes

1. Related Material

We will also need:

• Marketing collateral, including a Press Release.

• Technical Publications.

• Release Note.

• Extra Quality Assurance Material.

2. Uni-directional Links

Finding links back to an object from objects that have a uni-directional link to it can be
deferred until later. The class instance feature of the Parallel Query Engine will make it
faster, but it could still take a long time.

3. Typed Transitive Closure Iterator

We should also consider providing an iterator that performs a transitive closure (loop
checked) navigation via a named association type.

4. Link Analysis

The link checker could be supplemented with an API that would return a list of the OIDs
of the objects involved in links between any two objects.

5. Ad Hoc Query Support

LG: Connection Explorer	 of 	 08/05/093 5

MRD	 	 Objectivity Confidential

Declaritive support for ad hoc queries, probably implemented as a part of the Enhanced
Object Qualification project, can be delivered after Release 10.

6. Scalability

The loop checking algorithm should work for extremely large federations, i.e. it must not
be able to run out of virtual memory. One way to implement this would be to use a
container that is deleted after it has been used.

7. Types of links

The first implementation is limited to associations because their purpose is clearly to
connect objects. Concerning other types of link:

• VArrays of (or including) references could be optionally included in the
iteration or connection check. They will not be searched by default.

• Links within embedded objects can be treated like VArray references.
• Collections can be left until later as they often have semantics such as (“I

found these when I ran a query concerning issue blah blah blah”) rather than
a direct connection. There is already an API that can determine whether an
object is in a collection and to iterate over a collection.

• There is no need to support lookup keys.
• There is no need to use template specialization to capture the type filter of

result objects, i.e. it will be sufficient to use ooItr(ooObj)::set_typeN() or an
analog.

• The user needs the ability to analyze the object of iteration and decide if
navigation from the object is needed, ie., at the time of visitation of a
qualifying object, the application may make a dynamic determination to
direct the iterator not to further traverse links from this object. It would seem
that this does not require any new mechanism in the iterator API as users can
do this with current iterators. However, declaritive queries could use this
feature.

8. Candidate Requirements for Later Releases

• Visitation of an object should entail a way to obtain a representation of the links
traversed to reach it.

• We need the ability for users to specify the target types, which can be used to
improve efficiency by avoiding paths that cannot lead to that type.

• Allow users to be able to specify how a link’s cost is determined. As opposed to
considering it as just having a weight of 1:

LG: Connection Explorer	 of 	 08/05/094 5

MRD	 	 Objectivity Confidential

o For example, an application could assign a weight to link specifications
such that two hops with one kind of link are equal to one hop with another
kind for purposes of computing shortest path.

• Make it possible to limit the search depth.
• Make it possible to specify whether a depth-first or breadth-first search algorithm

is employed, defaulting to breadth-first .
o Breadth-first search causes nearest objects to be visited first, but will

probably have higher virtual memory cost where the intention is to visit
large numbers of distantly-related objects.

o Depth-first search is more useful for algorithms generating a visualization
of the paths.

• Multiple visitations of the same object using different paths should be suppressed
by default but be enablable. Note that the user needs to be warned that iterating
onward from that point will cause the algorithm to loop forever.

LG: Connection Explorer	 of 	 08/05/095 5

	Market Requirements Document
	Feature Name: Connection Explorer
	Version: 3 Date Submitted: 08/05/09 – Name changed from Generic Iterator
	Version: 2 Date Submitted: 10/12/07 Completed By: Leon Guzenda, with input from Technical Services and Engineering.
	Version: 1 Date Submitted: 09/08/05 Completed By: Leon Guzenda

	Description of the Problem
	Description of the Requested Feature
	Example: The diagram below shows a network of connected objects.

	Part of an existing feature or does it require another feature, if so, which one?
	How is this problem being solved now, and why isn't that acceptable?
	What languages must support this capability?
	Which platforms must be supported?
	Do any competitors already have this feature?
	Customers who require this feature
	Revenue at risk, or which could be won
	When is this required?
	Additional Notes

