
MRD	 	 Objectivity Inc.

Market Requirements Document

Feature Name: Graph-Optimized Associations

Version 2: Date Submitted: 04/13/10	 	 Completed By: Leon Guzenda
Version 1: Date Submitted: 04/12/10	 	 Completed By: Leon Guzenda

Description of the Problem

Objectivity/DB associations provide an efficient mechanism for maintaining multi-
cardinality links between objects. However, they were designed for applications that
almost always look at the data in objects that are visited when a navigation iterator visits
them. We are now increasingly encountering classes of problems where rapid traversal of
the links between specific objects in a graph is more important than looking at the data in
the intervening objects. For instance, determining whether or not there is a path between
two objects, regardless of the association (and hence, object) types involved.

Description of the Requested Feature

An optional Graph-Optimized attribute of standard (dynamic, inline short and inline long)
associations. A Graph-Optimized association will be implemented to make traversal of a
graph, particularly for the type of operation described above, as efficient as possible.
There may have to be trade-offs between existing, data-optimized and the new graph-
optimized mappings.

It would also be convenient to be able to group edge attributes with a particular link, e.g.
to specify the Number_used and Size of the wheels shipped with a Vehicle in a Vehicle-
to-Parts association. This can be done with objects and associations, but it is somewhat
clumsy. The edge attributes should be physically located with the association VArray
element.

Part of an existing feature or does it require another feature, if so, which one?

• This would be an enhancement of an existing feature.

How is this problem being solved now, and why isn't that acceptable?

Some developers have resorted to using ooVArrays of OIDs in order to avoid any
perceived overheads of the standard association mechanism. This should not be
necessary, as associations are actually mapped to underlying Varrays. However,
association VArrays cannot be pre-sized and performance degrades as they become large
slots. Both of these problems may be fixed as a part of the Segmented VArray project.

LG: Graph-Optimized Associations	 of 	 04/13/101 7

MRD	 	 Objectivity Inc.

Also, as described above, handling edge data as a part of a traversal or query is currently
clumsy.

What languages must support this capability?

• C++ (Essential)
• Java and .Net for C# (Soon)
• SQL++ (Eventually)

Which platforms must be supported?

• All.

Do any competitors already have this feature?

• None of the ODBMSs is as efficient at handling cross-database containers as
Objectivity/DB. However, there is a growing market for graph databases, such as
Neo4J and Hypergraph. They are aimed at providing fast graph traversal as a front
end to RDBMSs. Neo4J is particularly efficient and fast, so we should benchmark
against it.

Customers who require this feature

• The Intelligence, security and defence markets.
• It would speed up many aspects of the NGC (TRW) application.
• Social networking and relationship analysis applications.

Revenue at risk, or which could be won

• It is sobering to realize that sites such as Facebook, linkedIn and Plaxo could
easily have been developed with Objectivity/DB as the underlying storage engine.

When is this required?

• Release 10.2, or at some point prior to R11.

LG: Graph-Optimized Associations	 of 	 04/13/102 7

MRD	 	 Objectivity Inc.

Additional Notes

1. Related Material

We will also need:

• New Quality Assurance material.
• Updated documentation, training and web based training.

2. Implementation Recommendations

Associations are held in VArrays (Storage Manager slots) that generally reside in the
same physical page as data objects. The Link Hunter demo has shown that densely
packing the link information can significantly speed up traversal of graph structures when
it is not necessary to look at the data within each traversed object.

If the developer can specify that the association Varrays are not mixed with object data
then the link data will be stored optimally. However, traversing a link currently involves
fetching and opening the target object before opening the association VArray for onward
traversal. So, it would be convenient to store the OIDs of the target association Varrays
rather than the target objects.

If only this change was made it would be possible to reach a VArray and traverse
onwards, but it would currently be hard to find the owning object. So, the new mapping
should store the OID of the owning object in addition to the link data. One possible
implementation is described in Appendix A. It should be possible to leverage work on
segmented or nested VArrays in order to meet this new requirement.

LG: Graph-Optimized Associations	 of 	 04/13/103 7

MRD	 	 Objectivity Inc.

APPENDIX A – A Possible Implementation.

The following images have been captured from a presentation on this topic.

LG: Graph-Optimized Associations	 of 	 04/13/104 7

MRD	 	 Objectivity Inc.

LG: Graph-Optimized Associations	 of 	 04/13/105 7

MRD	 	 Objectivity Inc.

LG: Graph-Optimized Associations	 of 	 04/13/106 7

MRD	 	 Objectivity Inc.

LG: Graph-Optimized Associations	 of 	 04/13/107 7

	Market Requirements Document
	Feature Name: Graph-Optimized Associations
	Version 2: Date Submitted: 04/13/10 Completed By: Leon Guzenda Version 1: Date Submitted: 04/12/10 Completed By: Leon Guzenda

	Description of the Problem
	Description of the Requested Feature
	Part of an existing feature or does it require another feature, if so, which one?
	How is this problem being solved now, and why isn't that acceptable?
	What languages must support this capability?
	Which platforms must be supported?
	Do any competitors already have this feature?
	Customers who require this feature
	Revenue at risk, or which could be won
	When is this required?
	Additional Notes

