
Objectivity Case History

Customer Information
Customer:​
Status: (X) SOLD () Prospect ()Integrator
Industry:​ Aviation Controls​
Application Domain:​ This is a “Detailed” Case History – See Below
Platform:​ Windows NT
Compiler:​ Microsoft Visual C++
Other Tools:​ Rational Rose, Python

Buying Criteria
See below

Why Objectivity
See below

Contact Information
Objectivity Rep:​ John Jarrell
Customer Contact:​ Lenny Hoffman
Phone:​
Email:​

​ Objectivity Detailed Case History for Rockwell Collins Aviation
​ ​ ​ ​ ​ Jack Murray

Project Name:

​ Aviation Systems Design Database (ASDD)

Project Purpose:

To create a common design repository for all new aircraft cockpit designs. The
repository promotes reuse of design specifications and has the intelligence to
verify compatibility of components in new designs. The repository is an
infrastructure component set up to be usable by several engineering applications
(many as yet undefined). The same group is also doing the first implementation
called SAGE (no particular meaning) ; it has a slick Web Browser-like interface to
enter components, connect them for a complete cockpit design and make changes.

Who is our customer?

Our direct customer is the ASDD development group headed by Lenny Hoffman.
In turn his customers are other project teams which will use the infrastructure and
end users (engineers) who are using the first implementation, SAGE.

0/0/00​

What does the customer consider value?

Lenny has always considered the value in Objectivity to be in its distribution,
scalability, performance and ease of use. Ease of use includes not needing to write
mapping code and Objectivity’s automatic associations and related methods and
enforcement of referential integrity. Lenny has always been a big fan of STL. He
used it in the ASDD application before it was supported by Objectivity. He is
now using our STL support and considers that to be valuable. Finally, he sees
schema evolution to be a very valuable feature in this dynamic development
environment.

Are we delivering value?

In some of the above we have not met expectations. He has implemented his own
associations to avoid the time-consuming complexity it adds to DDL. He has also
run into some quirkiness in our initial implementation of STL and Schema
Evolution but feels we will work this out over time.

They now feel the real value we provide is a “Basic Engine” to hide the
complexities of persistence, network (IP) handling, basic data integrity and
transaction handling. Scalability because of the distributed client, distributed
server nature of Objectivity is also of great value to them.

How has Objectivity helped differentiate their product in the marketplace.

Even though their customers are internal, they do have other choices. The biggest
differentiation is the ability to do true configuration management (several levels
deep). Other initiatives within Rockwell have been unable to do this due to the
limitations of relational databases. With ASDD, if something changes only that
object needs to be changed. With relational, all related rows must be changed and
code complexity increases while performance drops. As Lenny says if you try to
do with relational what we are doing in the area of Configuration Management
“You might as well just shoot yourself”.

Discuss the Selection/Evaluation process including competition and why Objectivity
was selected.

They began their selection process in the summer of 1995. They looked at only
object databases because the felt relational would be too slow and require writing
too much code. After presentations from Objectivity, ODI and Versant, they
chose Objectivity for further prototyping and benchmarking. After about a year
of testing they made their first purchase and began developing ASDD.

On what platform(s) are they developing?

0/0/00​

Originally a big part of the Objectivity decision was the fact that it was the only
ODBMS to support VAX/VMS. Luckily they gradually moved to first Windows
95 and then Windows NT as we dropped VMS.

On what platform(s) will they deploy?

​ Windows NT.

How is Objectivity actually being used in the project?

It is being used to store component definitions, their properties and rules for
connections among them. Objects represent boxes, wires, data transferred over
the wires, the format, frequency and quality of the data transferred. They also
store a complete Meta-Data model and all the information needed for
“Introspection” (total knowledge of what all the pieces of the model mean and
rules for relationships). Other objects are stored for their own Event Notification.

What Language(s) are being used?

Primarily C++ but they are also using Python which is used to indirectly
manipulate Objectivity via the ASDD layer and its metamodel and introspection
rules. One of the other groups within Rockwell is planning to use ASDD in its
application, which will be written in JAVA.

Are any of the following technologies implemented:

​ Object modeling tools

Rational Rose is used to document their model, not for code generation.
They are moving toward UML.

​ MFC/ Other Class Libraries

Yes, MFC is used for part of the GUI implementation of SAGE. They
have invented their own WYSWYG HTML interface, which can not yet
be done with MFC. STL has been used (without the Objectivity support)
for (among other things) maps and Indexes.

​ Object Request Brokers

​ ​ Considering for the future.

0/0/00​

​ Web/Email integration

They can generate HTML for web access that looks identical to the native
interface (read only).

​ Other of interest

​ ​ Event Notification:

Again, they have built their own. It uses “simplified polling” at a
less granular (container) level where a transaction can register an
interest in a container (not an object). If that container changes,
the transaction receives an event log that the transaction analyses
to determine the impact. Because there is no central registration
point there is no bottleneck and this becomes highly scalable.
Lenny compares it to the Objectivity distributed architecture where
each computer shares the load avoiding a central bottleneck.

​ ​ ​ ​
​ ​ Configuration Management

They have built in the ability to have multiple concurrent changes
(versions) to the same design. This is true configuration
management, several levels deep using policies which go beyond
referential integrity (this is total data integrity) or simple version
control.

Features used:

​ Indexes

​ ​ No, they use STL.

​ Maps

​ ​ No, they use STL.

​ Named Objects

They use one as an entry point. Most of the rest of the lookups are
navigational.

​ Associations
​ ​

They have implemented their own bi-directional associations with policies
defined in the metadata model, which trigger creation of the proper
relationships.

0/0/00​

​ Versioning

​ ​ No. They do their own Configuration Management.

​ Predicate Query

No, they use their own “Introspection” for navigational based, intelligent
searching.

​ SQL

​ ​ Considered this but decided to do reporting with Python.

​ ODBC

​ ​ Considered this but decided to do reporting with Python.

​ FTO

​ ​ Possibly in the future.

​ DRO

​ ​ Possibly in the future.

​ Schema Evolution

They are creating their own dynamic schema using the metaschema built
into ASDD.

​
​ Heterogeneity of O/S​

​ ​ Planned initially but now all Windows XX.

​ Heterogeneity of Language

​ ​ Yes, initially C++ but JAVA will be used in the future.

​ Multithreading

​ ​ Not needed in their design.​

​

0/0/00​

ODMG interface

​ ​ Not believers.

​ STL

Yes, although mostly their own.

How are they using Containers?

Since their configuration management uses change packages where everything
under change is put in its own temporary container, everything else is basically
read-only. Since there are no concurrency issues, they put everything in one
container until they have a need to break it out. This is done administratively.
They can re-containerize anything, anyway they want at any time for future
flexibility.

Describe how transactions are used (long vs. short, MROW vs. non-MROW) and
describe GUI and its transaction semantics (short vs. long locks for update).

They use short transactions under their GUI. All read transactions are MROW.
Every user action creates a transaction that accomplishes everything the
metamodel’s rules require. No transaction is left open while a user looks at the
screen. They may need to add checking for changes since the data was displayed
to avoid walking on updates since the display. This is a slight exposure because
of the way their Configuration Management does changes in a separate container
via a “Change Package”. The exposure here is only when more than one engineer
is working on the same change package at the same time. They believe this can
be done with a comparison to the screen data before updating.

0/0/00​

	Objectivity Case History
	Customer Information
	Buying Criteria
	Why Objectivity
	Contact Information

